InLight[™] Systems

Landauer's Albedo Neutron (OSLN) Detector

Introduction

The InLight Basic - OSLN dosimeter responds to beta, photon, and neutron radiation fields and is used to measure whole body Hp(0.07), Hp(0.3), and Hp(10) resulting from beta, photon, and neutron radiation. The dosimeter contains three Al_2O_3 :C detectors and one detector with Al_2O_3 :C coated with 6Li_2CO_3 . The dosimeter is composed of an N-type slide, LA-type case, and a polycarbonate holder. The dosimeter is capable of measuring beta with energies of 680 to 2284 keV E_{max} (227 to 761 keV E_{ave}), photons with energies between 16 to 1250 keV, and neutron energies from 40 to 5000 keV, **Table1**, **Table 2**, **Figure 4**.

Slide Configuration & Detector Material

Landauer's OSL material (Al_2O_3 :C) responds to both photons and beta radiations and is insensitive to neutron radiation. This material is located in read positions 1 (Element 1), read position 3 (Element 3), and read position 4 (Element 4).

For this Albedo dosimeter, Landauer has created OSLN material by coating the Al₂O₃:C with $^6\text{Li}_2\text{CO}_3$ to make the Al₂O₃:C sensitive to neutrons in addition to responding to photon and beta radiation. The OSLN detector is located in read position 2 (Element 2), **Figure 1** The neutron response is induced in the Al₂O₃:C when ^6Li absorbs a neutron and produces both tritium and alpha particles, **Equation 1**. These particles have short ranges in the Al₂O₃:C and thus give up their energy in the Al₂O₃:C which generates a stored charge.

6
Li + 1 n₀ = 4 He (2.05 MeV) + 3 H (2.75 MeV)

Equation 1 – Neutron Interaction with ⁶**Li**

Analysis

The InLight Basic – OSLN dosimeter, **Figure 2**, can be analyzed on InLight Manual, 200, 500, or microStar readers, **Figure 3**. No hardware modifications are required. A simple update to the reader software allows full analysis of the InLight Basic – OSLN dosimeter. Analysis can be done repeatedly to verify a radiation exposure or to accumulate a total dose over time. The typical depletion per read for OSL and OSLN material is less than 0.4% at full LED power (strong beam) and ~0.1% at weak LED power (weak beam).

Annealing and Re-use

The InLight Basic – OSLN dosimeter can be annealed to remove dose using Landauer's Model 50A Automatic Annealer.

InLight[™] Systems

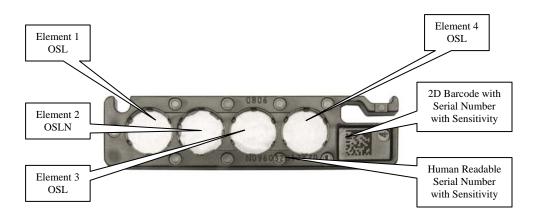
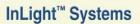
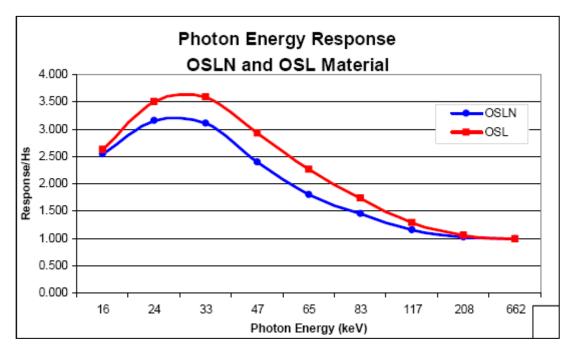


Figure 1: N-Type Slide

Figure 2
InLight Basic – OSLN Components

Figure 3 – InLight Readers




Table 1 – Energy Response

Field	Energy Response		
Beta	680 keV E _{max} (227 keV E _{ave})	2284 keV E _{max} (761 keV E _{ave})	
Photons	16 keV	1250 keV	
Neutrons	40 keV	5000 keV	

Table 2 - OSLN Response/mrem Compared to Other Neutron Dosimeters

PNNL Neutron Field	OSLN Al ₂ O ₃ :C material coated with ⁶ Li ₂ CO ₃	LDR Neutrak CR-39	ŪD-802 "Li₂B₄O ₇	TLD-600 - TLD700 ⁶ LiF - ⁷ LiF
	Response/mrem	Response/mrem	Response/mrem	Response/mrem
Moderated ²⁵² Cf with D ₂ O Sphere	1.69	1.54	1.66	3.02
Bare ²⁵² Cf	0.22	1.54	0.21	0.31

Note: CR-39 correction factors are based on a reference calibration to AmBe.

Figure 4 – Photon Energy Response